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Abstract
We study supervised learning and generalization in coupled perceptrons trained
on-line using two learning scenarios. In the first scenario the teacher and the
student are independent networks and both are represented by an Ashkin–
Teller perceptron. In the second scenario the student and the teacher are simple
perceptrons but are coupled by an Ashkin–Teller-type four-neuron interaction
term. Expressions for the generalization error and the learning curves are
derived for various learning algorithms. The analytical results find excellent
confirmation in numerical simulations.

PACS numbers: 87.18.Sn, 05.20.−y, 87.10.+e

1. Introduction

One of the more interesting properties of neural networks is their ability to learn from examples.
In on-line learning processes a student network updates its couplings after the presentation
of each example in order to make its outputs agree with those of the teacher. In the standard
situation the student knows only the inputs and the corresponding outputs of the teacher and
has no further knowledge of the rule used by the latter. Furthermore, in the course of learning
the student is also able to correctly classify new examples, which he has never seen before.
The latter property is called generalization.

Various aspects of learning and generalization in neural networks have been intensively
studied in many different contexts. For about a decade now statistical mechanical methods
have been used successfully in these studies (for recent reviews see, e.g., [1–4]).

Much theoretical research has been concentrated on the simplest models, such as the
binary perceptron. Simultaneously with the progress in these investigations, new more
realistic models have been considered, e.g. models with multi-state neurons [5], multi-neuron
interactions [6, 7] and many layers (see, e.g., [8–10]).

In this paper we study on-line learning and generalization in a recently introduced
model, allowing two different types of binary neurons at each site, possibly having different
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functions [11, 12]. More specifically, this so-called Ashkin–Teller (AT) perceptron contains,
besides two-neuron interaction terms, a four-neuron interaction term. For the underlying
biological motivation for the introduction of different types of neurons, we refer to [13]. Here,
we recall that the maximal capacity of the AT perceptron model II introduced in [11, 12] can
be larger than that of the standard binary perceptron [12] and that the corresponding recurrent
network model can be a more efficient associative memory than the sum of two Hopfield
models [13]. A natural question is then how this AT perceptron performs in on-line learning
and generalization tasks.

Two learning scenarios turn out to be of interest. In the first scenario, where the student
and the teacher are independent AT perceptrons, we show that the resulting learning curves do
not differ very much from those already known for perceptrons with multi-state neurons. For
some particular values of the network parameters, we precisely reproduce the learning curve
of the four-state Potts perceptron [5].

In the second scenario both the student and the teacher are represented by a simple
perceptron but they are coupled by an AT-type four-neuron interaction term. Hence, contrary
to the standard set-up, they are not independent. This can be considered as a sort of ‘hardware’
coupling. As a result, the teacher mapping also changes in the process of learning. We obtain
a set of learning curves which qualitatively differ from those found in the independent set-up.
We also find different asymptotic behaviour when the number of examples increases to infinity.
For certain values of the network parameters, such a coupling describes the realistic situation
that the rule used by the teacher is partially shared by the student.

The rest of the paper is organized as follows. In section 2 the model and the learning
scenarios are introduced. The formulae for the generalization error are derived in section 3.
The differential equations for the evolution of the order parameters are obtained in section 4.
Their solutions, compared with numerical simulations, can be found in section 5. In section 6
some concluding remarks are presented. Finally, the two appendices contain some technical
details of the derivations.

2. The model and the learning scenarios

The AT perceptron is defined as a mapping of the binary (±1) inputs {si, σi}, i = 1, . . . , N
into two binary (±1) outputs s and σ :

s = sgn(h1) + θ(γ3|h3| − γ1|h1|)θ(γ2|h2| − γ1|h1|)(sgn(h2h3) − sgn(h1)) (1)

σ = sgn(h2) + θ(γ3|h3| − γ2|h2|)θ(γ1|h1| − γ2|h2|)(sgn(h1h3) − sgn(h2)) (2)

where θ is the Heaviside step function and γr � 0, r = 1, 2, 3, denote the strength of the local
fields hr which are defined as follows:

h1 = 1
n1

∑
i J

(1)
i si h2 = 1

n2

∑
i J

(2)
i σi

h3 = 1
n3

∑
i J

(3)
i siσi n2

r = ∑
i

(
J

(r)
i

)2
.

(3)

The mapping (1)–(2) can be equivalently represented by the set of three equations
(cf model I in [12])

s = sgn(γ1h1 + σγ3h3) (4)

σ = sgn(γ2h2 + sγ3h3) (5)
sσ = sgn(σγ1h1 + sγ2h2). (6)
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For γ3 = 0 the outputs s and σ are completely independent and defined as in the simple
perceptron

s = sgn(h1) (7)

σ = sgn(h2). (8)

2.1. Learning scenario I

First, we consider the standard situation where the student and the teacher are two completely
independent networks. In our case they are represented by AT perceptrons which means that
the outputs of the teacher {sT , σT } and the student {sS, σS} are both determined by the mapping
(1)–(2) but with different couplings: JT

r and JS
r respectively, with J r = {

J
(r)
i

}
. Initially,

the student and the teacher couplings are not correlated. At each time step t, an example is
presented to the student. The student network then updates its couplings according to the
following learning rule F:

JS
1 (t + 1) = JS

1(t) +
1

N
FsT (t)s(t) (9)

JS
2 (t + 1) = JS

2(t) +
1

N
FσT (t)σ(t) (10)

JS
3 (t + 1) = JS

3(t) +
1

N
FsT (t)σT (t)ψ(t) (11)

where

s = {si} σ = {σi} ψ = {siσi}. (12)

In this scenario we consider only Hebbian learning for which F = 1. Furthermore, examples
are chosen randomly with equal probability out of the complete set of examples.

2.2. Learning scenario II

Alternatively, the AT perceptron can also be seen as two coupled perceptrons with outputs
s and σ . In the second scenario we precisely analyse learning between such coupled
perceptrons (or branches of the AT perceptron). The outputs of the student s and the teacher
σ are defined by equations (1) and (2), respectively.

When h3 > 0, the teacher and the student use two different mixtures of two perceptron
mappings defined by the couplings J1 and J2. It implies that s and σ are always equal
to sgn(h1) or sgn(h2) and sometimes, depending on the relation between γ1h1, γ2h2 and
γ3h3, s = σ . In the limit γ3 → ∞, the student and the teacher networks become so strongly
coupled that one always has s = σ and the mapping (1)–(2) can be simplified to

s = σ = sgn(h) h = {hx : |hx | > |hy |; x, y = 1, 2}. (13)

For h3 < 0, the situation is quite different. Even with J1 = J2, there is always a non-zero
fraction of disagreements between the student and the teacher, as long as γ3 > 0. In the
limit γ3 → ∞, the student always disagrees with the teacher, and the mapping (1)–(2) can be
written in the form

s =
{−σ = sgn(h1) if |h1| > |h2|
−σ = −sgn(h2) if |h1| < |h2|. (14)
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For any value of the coupling field h3 and γ3 = 0, the student and the teacher are independent
and they use the mappings defined by only one coupling vector (cf (7)–(8)).

In what follows, we take s = σ because the student and the teacher must have the same
inputs. We remark that this implies that h3 = ∑

i J
(3)
i

/
n3 (cf (3)). Again, at each time step

t, an example is presented to the student network and its coupling vector J1 is updated as
follows:

J1(t + 1) = J1(t) +
1

N
F(γ1h1, γ3h3, s, σ ) σ (t)s(t). (15)

Furthermore, at each time step a new coupling vectorJ3 is generated thus making the coupling
between the perceptrons random. The coupling vector of the teacher, J2, is not changed in
the process of learning, but later on we average over all possible teachers. In this scenario we
consider three learning rules F:

Hebbian F(γ1h1, γ3h3, s, σ ) = 1

perceptron F(γ1h1, γ3h3, s, σ ) = θ(−sσ )

Adatron F(γ1h1, γ3h3, s, σ ) = −(σγ1h1 + γ3h3)θ(−sσ ).

3. Generalization error

A topic of interest in what follows is the generalization error. It is defined as the probability
that the student and the teacher disagree, i.e. that their outputs are different. When the teacher
and the student are simple independent perceptrons, the generalization error εg = arccos(ρ)/π
is a simple function of the overlap ρ = JT ·JS/(nSnT ) between the student and the teacher
couplings, which in this case plays the role of an order parameter. Unfortunately, for more
complicated models, this relation takes a much more involved form (see, e.g., [5]).

3.1. Scenario I

In the first scenario the definition of the generalization error reads

εg(ρ1, ρ2, ρ3) = 〈
1 − 1

4 (1 + sT sS)(1 + σT σS)
〉
I

(16)

with the overlaps ρr defined by

ρr = JS
r ·JT

r

nT
r n

S
r

(17)

and with 〈· · ·〉I = ∫
dhT dhS · · ·PI(h

T ,hS) denoting the average over the teacher field,
hT = {

hT
1 , h

T
2 , h

T
3

}
, and the student field, hS = {

hS
1 , h

S
2 , h

S
3

}
, which have a joint probability

distribution PI(h
T ,hS). The averages over these fields are double averages: one over the

examples and the other over the couplings. This arises because the couplings and the examples
enter the mapping (1)–(2) and the learning rules only through the local fields. We assume that
the examples are taken randomly with equal probability out of the full training set. Then, in
the thermodynamic limit, the local fields become correlated Gaussian variables and the joint
probability distribution PI(h

T ,hS) can be written in the form

PI(h
T ,hS) = ((

1 − ρ2
1

) (
1 − ρ2

2

) (
1 − ρ2

3

))−1/2 1

2π3
exp

{
ρ1h

S
1h

T
1

1 − ρ2
1

+
ρ2h

S
2h

T
2

1 − ρ2
2

+
ρ3h

S
3h

T
3

1 − ρ2
3

− 1

2

[(
hS

1

)2
+
(
hT

1

)2

1 − ρ2
1

+

(
hS

2

)2
+
(
hT

2

)2

1 − ρ2
2

+

(
hS

3

)2
+
(
hT

3

)2

1 − ρ2
3

]}
. (18)
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Performing the averages in (16) explicitly leads to the expression

εg(ρ1, ρ2, ρ3) = 3

4
−

3∑
r=1

Ir (19)

with

Ir = 1

2

∫ ∞

0
DhT

r erf


 ρrh

T
r√

2
(
1 − ρ2

r

)

[1 − 2

(
1 − erf

(
γrh

T
r

γr ′
√

2

))(
1 − erf

(
γrh

T
r

γr ′′
√

2

))]

+
1

4

∫
D
(
hT
r , h

S
r

) [
(a+

rr ′ − a−
rr ′)(a

+
rr ′′ − a−

rr ′′)

+ (a+
rr ′ + a−

rr ′)(a
+
rr ′′ + a−

rr ′′)sgn
(
hT
r h

S
r

)]
(20)

a±
rr ′ = 1

2

(
1 − erf

(
γr

∣∣hT
r

∣∣
γr ′

√
2

))
−
∫ − γr |hTr |

γ
r′

−∞
DhT

r ′ erf


γr

∣∣hS
r

∣∣± γr ′ρr ′hT
r ′

γr ′

√
2
(
1 − ρ2

ν

)

 (21)

where Dz = dz exp(−z2/2)/
√

2π is the Gaussian measure, r ′, r ′′ = 1, 2, 3 (r �= r ′ �= r ′′ �= r)
and

D
(
hT
r , h

S
r

) = dhT
r dhS

r

2π
√

1 − ρ2
r

exp

{
−1

2

(
hT
r

)2
+
(
hS
r

)2 − 2ρrh
S
r h

T
r

1 − ρ2
r

}
(22)

is a correlated Gaussian.

3.2. Scenario II

In the second scenario the generalization error is given by

εg(ρ) = 〈1 − 1
2 (1 + sσ )〉II =

∫
dhPII(h)(1 − 1

2 (1 + sσ )) (23)

with the overlap ρ defined by

ρ = J1 ·J2

n1n2
. (24)

Here again, as in the first scenario, the average over the examples and the couplings is
done through averaging over the local fields. The examples are chosen randomly with equal
probability out of the full set of examples. In the thermodynamic limit, this leads to a Gaussian
distribution of the local fields. Since the behaviour of the system strongly depends on the sign
of the coupling field h3, we consider three different field distributions PII

P±(h) = ((2π)3(1 − ρ2))−1/2 exp

{
−1

2

(
h2

1 + h2
2 − 2h1h2ρ

1 − ρ2
+ h2

3

)}
(25)

P+(h) = 2P±(h)θ(h3) (26)

P−(h) = 2P±(h)θ(−h3). (27)

In the case of the distribution P±, the components of the vector J3 are taken randomly (with
equal probability) from some interval (−a, a), with a being a positive real number. In the
case of the distributions P+ and P−, these components are chosen in the same way but those
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values which lead to negative respectively positive values of the field h3 are omitted. The
generalization error in these three situations reads, with obvious notation,

εcg(ρ) = 1

π
arccos(ρ) + Ic c = ±,+,− (28)

where

I± = 1
2 (u

−
12 − u+

12 + u−
21 − u+

21) I+ = −u+
12 − u+

21 I− = u−
12 + u−

21 (29)

and

u±
rr ′ =

∫ 0

−∞
Dh2

(
1 + erf

(
γrh2

γ3

√
2

))(
1 + erf

(
h2(γr/γ

′
r ± ρ)√

2(1 − ρ2)

))
. (30)

It is easy to realize that only for positive h3 (i.e. for PII = P+), does the generalization error
ε+
g(ρ) go to zero as ρ goes to 1. It is also equal to zero for any ρ when PII = P+ and γ3 = ∞.

4. Order parameters and their evolution

As can be seen from the formulae in the last section, the generalization error is a function
of the overlaps ρ or ρr , which play the role of order parameters in the learning process.
Their evolution is coupled with the evolution of the norms of the couplings nr , and in the
thermodynamic limit N → ∞ it can be described by ordinary differential equations [14].

In the first scenario a standard calculation (for a review see, e.g., [2]) leads to the following
result for Hebbian learning:

d

dα
nr = 〈

$T
r h

S
r

〉
I +

1

2nr

d

dα
ρr = 1

nr

〈
$T

r

(
hT
r − ρrh

S
r

)〉
I − ρr

2n2
r

r = 1, 2, 3 (31)

where $T
1 = sT ,$

T
2 = σT ,$

T
3 = sT σT and α = t/N is the number of examples scaled with

the size of the system. It becomes continuous in the thermodynamic limit. After performing
the averages, we arrive at

dnr

dα
= ρrbr +

1

2nr

dρr

dα
= 1 − ρ2

nr

br − ρr

2n2
r

(32)

with the quantity br given by

br =
√

2

π

{
1√
cr ′r

[
1 − 2

∫ ∞

0
Dh erf

(
hγr ′

γr ′′
√

2cr ′r

)]

+
1√
cr ′′r

[
1 − 2

∫ ∞

0
Dh erf

(
hγr ′′

γr ′
√

2cr ′′r

)]}
(33)

crr ′ = 1 +

(
γr

γr ′

)2

. (34)

For γ1 = γ2 = γ3, this quantity simplifies to

br = 2√
π

(
1 − 2

π
arctan

(
1√
2

))
∼= 0.6864. (35)

We remark that the differential equations (32) for a given r have the same form as those found
for the simple perceptron with Hebbian learning [2]. More specifically, they differ only by the
value of the coefficient br , which for the simple perceptron is equal to

√
2/π ≈ 0.798.
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For the Hebbian learning we are considering, it is possible to construct a simple expression
for ρr as a function of α. Following Opper and Kinzel [1], we slightly modify the update rule
(9)–(11) (substituting 1/N by 1/

√
N ) and easily arrive at

ρr =
√

αa2
r

αa2
r + π

(36)

where we have taken ρ(0) = 0 as an initial condition and

ar = 2
√
π

∫ ∞

0
Db b

[
1 −

(
1 − erf

(
γrb

γr ′
√

2

))(
1 − erf

(
γrb

γr ′′
√

2

))]
. (37)

This expression differs from the solution of (32) only for small values of α and has the
advantage of having a simple form. The evolution of ρ in the case of simple perceptrons is
described by the single equation (36), but with a coefficient ar = √

2. Since these results are
very similar to those obtained for the simple perceptron, we do not test other algorithms in
this scenario because we expect that in those cases also a strong resemblance to the simple
perceptron occurs.

In the second scenario with the learning rule F defined in subsection 2.2, we have to solve
the following set of differential equations:

d

dα
n1 = 〈h1σF(γ1h1, γ3h3, s, σ )〉II +

1

2n1

〈
F 2(γ1h1, γ3h3, s, σ )

〉
II (38)

d

dα
ρ = 1

n1
〈σF(γ1h1, γ3h3, s, σ )(h2 − ρh1)〉II − ρ

2n2
1

〈
F 2(γ1h1, γ3h3, s, σ )

〉
II. (39)

Performing the averages leads to much more complicated expressions than those obtained in
the first scenario. The explicit form of these expressions obtained for Hebbian, perceptron and
Adatron learning with the distributions P± and P+ can be found in appendix A.

5. Results

In this section we discuss the numerical solutions of the differential equations (31), (38) and
(39) and compare them with the results of simulations. Because only the ratios of the strength
parameters γ1, γ2 and γ3 are important, we take γ1 = γ2 = 1 and vary only γ3.

5.1. Scenario I

The learning curves for small values of the number of examples α obtained in the first scenario
using formula (36) are presented in figure 1. All curves start with an initial generalization
error εg = 0.75 corresponding to random guessing in four-state models. For γ3 = 0, learning
between two independent perceptrons is described. For γ3 = 1 the learning curve is identical
with that of the four-state Potts perceptron [5] (cf [11, 12]). In the limit α → ∞, εg decays as
α− 1

2 for all values of γ3, precisely as in the case of learning between simple perceptrons.

5.2. Scenario II

A careful analysis of expression (28) leads to the conclusion that in the second scenario the
generalization error can be non-zero even when the normalized angle between the student and
the teacher couplings, φ = arccos(ρ)/π , is equal to zero. This happens when we allow the
field h3 to take negative values. Therefore, we follow the evolution of two dynamical variables
in the following: the generalization error εg and the normalized angle between the student
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0 2 4 6 8 10
α

0.2

0.4

0.6

0.8

εg

Figure 1. Learning scenario I: the generalization error εg as a function of the number of examples
α with γ1 = γ2 = 1 and γ3 = ∞, 1, 0 from top to bottom.
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(ε
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  l
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10
(φ

)

γ3=9.9

γ3=0.001

γ3=0

γ3=0.001

γ3=9.9

Figure 2. Learning scenario II: log–log plot of the generalization error εg (solid lines) and the
normalized angle between the teacher and the student φ (broken lines) for P = P± and Hebbian
learning as a function of the number of examples α. Intermediate curves not marked on the figure
are for γ3 = 0.01, 0.1, 1.

and the teacher φ. For all the learning algorithms and distributions of the fields that we have
considered, we observe an abrupt change in the asymptotic behaviour in α when γ3 changes
from 0 to some non-zero value. Logarithmic plots of the learning curves for two distributions
of the fields, P± and P+, are presented in figures 2–7. The learning curves for the distribution
P− are qualitatively very similar to the curves obtained for P±.

5.2.1. PII = P±. Let us first analyse the results obtained for the distribution P± in more
detail. For γ3 �= 0, the generalization error saturates at some non-zero value. For Hebbian
and perceptron learning, the angle φ between the student and the teacher is asymptotically
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Figure 3. As in figure 2 but for the perceptron algorithm. Intermediate curves not marked on the
figure are for γ3 = 0.5, 1.
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Figure 4. As in figure 2 but for the Adatron algorithm. Intermediate curves not marked on the
figure are for γ3 = 0.1, 0.5.

decreasing to zero at a rate higher than that in the decoupled case γ3 = 0. For Hebbian learning
we find that in the limit α → ∞, φ ∼ α−1, versus φ ∼ α− 1

2 for γ3 = 0, whereas in the case of
the perceptron algorithm φ ∼ α− 1

2 , versus φ ∼ α− 1
3 for γ3 = 0. For the Adatron algorithm φ

and εg, both saturate at some non-zero value. In spite of the fact that the generalization error
never vanishes, the student is able to learn the couplings of the teacher using the Hebbian or
perceptron algorithm.

5.2.2. PII = P+. We observe that for all algorithms the generalization error goes
asymptotically to zero. For Hebbian and perceptron learning it decreases faster than in
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Figure 5. Learning scenario II: log–log plot of εg (solid lines) and φ (broken lines), for P = P+
and Hebbian learning as a function of α. Intermediate curves not marked on the figure are for
γ3 = 0.1, 1.0, 9.9.
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Figure 6. As in figure 5 but for the perceptron algorithm.

the decoupled case. In the limit α → ∞, we get εg ∼ α−1 for Hebbian learning while
εg ∼ α− 1

2 for perceptron learning. For Adatron learning we obtain the same decay exponent
as in the decoupled case. Surprisingly, for the perceptron and Adatron algorithms the decay
of the angle between the student and the teacher, φ, is slower than in the decoupled case in the
limit α → ∞. For the perceptron we have φ ∼ α− 1

4 and for the Adatron we find φ ∼ α− 1
2 . In

contrast, for Hebbian learning φ ∼ α− 1
2 as for the decoupled case.

Since an analytical analysis of the differential equations (see appendix A) is rather
involved, the asymptotic exponents discussed above have been determined numerically. Only
in the case of Hebbian learning with the field distribution P+ was the numerical analysis not
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Figure 7. As in figure 5 but for the Adatron algorithm.

entirely unambiguous. Therefore, we have derived the corresponding exponents analytically.
The details can be found in appendix B.

The initial generalization error is a function of the strength parameter γ3, which measures
the strength of the coupling between the two perceptrons. The larger the γ3, the greater the
common knowledge between the student and the teacher, and hence the smaller the initial
error. For γ3 → ∞, the student and the teacher use precisely the same rule (13) in order to
determine their outputs.

Finally, the numerical solution of equations (38)–(39) suggests that there is a simple
relation between the decay exponents of φ and εg , denoted by yφ and yg, respectively,

yg = 2yφ. (40)

This relation can also be derived analytically (see appendix B). For γ1 = γ2 we find in the
limit α → ∞ (and φ → 0) that

ε+
g ∼ π2

4
√

2γ3

φ2 (41)

which confirms the observation (40).

5.3. Computer simulations

To check the analytical results described above, we have performed numerical simulations.
The system sizes have been varied between N = 100 and N = 999 neurons. An excellent
agreement has been found for both scenarios and all learning algorithms, even for relatively
small N. As a representative example, we present a comparison between simulations and
analytical results obtained in the second scenario with the Adatron algorithm for γ3 = 0.1
and PII = P±. For the sake of clarity, we show the results obtained for small and large α

separately. The analytical results for small α are compared with simulations for a system with
N = 999 neurons (figure 8). For larger α we have made simulations for smaller systems
(N = 100), which are displayed in figure 9. In both cases only the results obtained for one
sample are shown.

For small α the simulations are smoothly aligned along the theoretical curves. This points
to the self-averaging property of the learning process. For larger values of α, very strong
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Figure 8. Second learning scenario with Adatron learning and γ3 = 1. Simulations (grey circles)
with N = 999 versus theoretical results (solid black line) for φ as a function of α.
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Figure 9. As in figure 8 with N = 100.

fluctuations occur around the theoretical result. This happens only for the Adatron algorithm
and PII = P± and, hence, cannot be explained entirely by the relatively small size of the
system. Indeed, as has been noted in section 5, in this case there is always a non-zero fraction
of disagreement between the student and the teacher. So, a strategy used by the Adatron
algorithm, which updates the couplings proportional to the error made by the student, must
lead to rather large random changes. Nevertheless, the simulation points in figure 9 are evenly
distributed on both sides of the theoretical curve.
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6. Conclusions

In this paper we have studied on-line learning and generalization using the AT perceptron.
Two learning scenarios have been considered. The results obtained in the first scenario, where
the student and the teacher are represented by independent AT perceptrons, are very similar to
those obtained for the simpler models [2]. For a particular choice of the network parameters,
the learning curve precisely reproduces that found for the four-state Potts perceptron [5].

In the second scenario the student and the teacher are taken to be simple perceptrons
coupled by a four-neuron interaction term. The particular results depend crucially on the
distribution of the couplings J3.

For the field distribution PII = P±, the generalization error always saturates at some
non-zero value. This is not surprising since this distribution allows the field h3 to take
negative values, which inevitably leads to a non-vanishing fraction of disagreements between
the student and the teacher even when J1 = J2 (cf (1) and (2)). In spite of this, for Hebbian
and perceptron learnings, the student manages to learn the couplings of the teacher perfectly
(in the limit α → ∞). This does not happen, however, for the Adatron algorithm, which in the
standard (decoupled) situation proved to be the fastest [2]. The reason is that this algorithm
changes the couplings of the student proportionally to the error made by the latter. Since this
error is non-zero even for J1 = J2, this cannot be a good strategy. Hence, the more ‘blind’
updates (Hebbian and perceptron) appear to be more effective.

For PII = P+ we have obtained quite different results. In this case the generalization error
goes to zero when ρ goes to 1. For Hebbian and perceptron learnings, we observe a faster
decay of εg than in the decoupled case. For Adatron learning the decay exponent of εg is the
same as that for γ3 = 0. Surprisingly, for all algorithms we find the same or slower decay of
φ compared with the decoupled case.

The best asymptotic decay of the generalization error has been obtained for PII = P+ with
the Adatron rule: εg ∼ 0.618α−1. Comparing with the case of independent perceptrons, we
see that it is better than the lower bound for on-line learning [2]

(
εg ∼ 0.88α−1

)
and worse

than the Bayesian lower bound [15]
(
εg ∼ 0.44α−1

)
.

We remark that in the course of a learning process in the second scenario also the teacher
mapping is changed but not the teacher couplings. This can be interpreted as a kind of effective
mutual learning caused by the (‘hardware’) coupling of the two perceptrons. This is different
from the mutual learning process analysed in [16, 17], the only other learning process of this
type known to us. There, in contrast to our set-up, the teacher explicitly learns from the
student. In our model the decay exponent of εg is not influenced by a particular value of the
strength parameter γ3 as long as it is non-zero.

The model analysed in the second scenario with PII = P+, where a part of the learning
rule is shared by the teacher and the student, can be compared to a real life situation in which
both of them, for example, have the same cultural background, followed the same education,
etc. One can expect that in such a situation the learning process is much more efficient since
the student and the teacher speak, in a sense, the same language. It corresponds to a faster
asymptotic decay of the generalization error in our model. It would be interesting to see, for
example, whether an optimization of the learning process [14] would further improve these
results.
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Appendix A. The evolution of the order parameters in the second learning scenario

The set of differential equations, (38) and (39), for the order parameters in the second learning
scenario can be written in the following form:

dn1

dα
= f1(ρ, γ13, γ23) +

1

2n1
f2(ρ, γ13, γ23)

dρ

dα
= 1

n1
f3(ρ, γ13, γ23) − ρ

2n2
1

f2(ρ, γ13, γ23)

with γrr ′ = γr/γr ′ and where the explicit form of f1(ρ, γ13, γ23), f2(ρ, γ13, γ23) and
f3(ρ, γ13, γ23) depends on the algorithm used and the distribution of the fields.

In the case of the distribution PII = P±, we have for
Hebbian learning

f1(ρ, γ13, γ23) = ρf21 + g21

f2(ρ, γ13, γ23) = 1

f3(ρ, γ13, γ23) = f21(1 − ρ2) − ρg21

Perceptron learning

f1(ρ, γ13, γ23) = 1
2 (ρf21 − f12 + g21)

f2(ρ, γ13, γ23) = 1
π

arccos(ρ) + I±
f3(ρ, γ13, γ23) = 1

2

(
f21(1 − ρ2) − g12 − ρg21

)
Adatron learning

f1(ρ, γ13, γ23) = −γ1

(
fa − f +

12 + f −
12 +

1

2

)
−γ3

(
t12 − ρt21 +

√
1 − ρ2

2π

(
1√
c−

21

+
1√
c+

21

))

f2(ρ, γ13, γ23) = γ 2
1

(
fa − f +

12 + f−
12 +

1

2

)
− γ 2

3

(
1

π
arcsin(ρ) − I± − 1

2

)

+ γ1γ3

(
t12 − 2ρt21 +

√
1 − ρ2

π

(
1√
c−

21

+
1√
c+

21

))
− γ2γ3t21

f3(ρ, γ13, γ23) = γ1

(
1

π

(√
1 − ρ2 + ρ arcsin(ρ)

)
+ ga

21 + ga
12 + ρ(fa + f +

21 − f −
21)

)

+ γ3

(
t21(1 − ρ2) +

√
1 − ρ2

2π

(
1√
c−

12

+
1√
c+

12

+
ρ√
c−

21

+
ρ√
c+

21

))

with

frr ′ =
√

2

π
−
∫ ∞

0
Dhr hr

(
1 − erf

(
γr3hr√

2

))[
2 − erf

(
hr(γrr ′ + ρ)√

2(1 − ρ2)

)

− erf

(
hr(γrr ′ − ρ)√

2(1 − ρ2)

)]

grr ′ = 1

brr ′

√
1 − ρ2

2π

(
1 − 2

π
arctan

(
γr3

brr ′

))
− 1

arr ′

√
1 − ρ2

2π

(
1 − 2

π
arctan

(
γr3

arr ′

))
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ga
rr ′ =

√
1 − ρ2

2π

{
1

a2
rr ′

[(
1 + γ 2

3ra
2
rr ′
)− 1

2 − 1
]

+
1

b2
rr ′

[(
1 + γ 2

3rb
2
rr ′
)− 1

2 − 1
]}

fa =
∫ 0

−∞
Dh1 h

2
1 erf

(
h1ρ√

2(1 − ρ2)

)
+ 2(1 − ρ2)

3
2

∫ ∞

0
Dh2

(
1 − erf

(
γ23h2√

2

√
1 − ρ2

))

×
∫ ∞

γ21h2

Dh1 h
2
1 sinh(ρh1h2)

f±
rr ′ = 1

2

∫ 0

−∞
Dhr h

2
r

(
1 + erf

(
γr3hr√

2

))
erf

(
hr(γrr ′ ± ρ)√

2(1 − ρ2)

)

t±rr ′ = − 1

2πcr3

(
cr3(1 − ρ2)

(γrr ′ ± ρ)2
+ 1

)− 1
2

+
1

cr32π
trr ′ = t+

rr ′ − t−rr ′

c±
rr ′ = 1 + (γr3)

2 +
(γrr ′ ± ρ)2

1 − ρ2
arr ′ =

√
1 + (γrr ′)2 − 2γrr ′ρ

1 − ρ2

brr ′ =
√

1 + (γrr ′)2 + 2γrr ′ρ

1 − ρ2

where I± is given by expression (29) and cr3 is defined in expression (34).
In the case of the distribution PII = P+, we have for

Hebbian learning

f1(ρ, γ13, γ23) = ρf
′+

21 + g+
21

f2(ρ, γ13, γ23) = 1

f3(ρ, γ13, γ23) = (1 − ρ2)f
′+
21 − ρg+

21

Perceptron learning

f1(ρ, γ13, γ23) = 1
2 (ρf

′+
21 − f

′+
12 + g+

21)

f2(ρ, γ13, γ23) = 1

π
arccos(ρ) + I+

f3(ρ, γ13, γ23) = 1
2 (f

′+
21(1 − ρ2) − g+

12 − ρg+
21)

Adatron learning

f1(ρ, γ13, γ23) = −γ1

[
f +
a − 2f +

12 − ga +
1

2

]
+ γ3

[
1

π
(1 − ρ) − 2t+

12 + 2ρt+
21 − 1

π

√
1 − ρ2

c+
21

]

f2(ρ, γ13, γ23) = γ 2
1

[
f +
a − 2f +

12 − ga +
1

2

]
− γ 2

3

[
1

π
arcsin(ρ) − I+ − 1

2

]

+ γ1γ3

[
− 2

π
(1 − ρ) + 2t+

12 − 4ρt+
21 +

2

π

√
1 − ρ2

c+
21

]
− 2γ2γ3t

+
21

f3(ρ, γ13, γ23) = γ1

[
1

π

(√
1 − ρ2 + ρ arcsin(ρ)

)
+ ρf +

a + ρga + 2
(
gb

12 + gb
21 + ρf +

21

)]

+ γ3

[
2t+

21(1 − ρ2) − 1

π

(
1 − ρ2 −

√
1 − ρ2

c+
12

− ρ

√
1 − ρ2

c+
21

)]
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with

f +
a =

∫ 0

−∞
Dh1 h

2
1 erf

(
ρh1√

2(1 − ρ2)

)
− 2(1 − ρ2)

3
2

∫ 0

−∞
Dh2

(
1 + erf

(
γ23h2√

2

√
1 − ρ2

))

×
∫ −γ21 |h2|

−∞
Dh1 h

2
1 exp(−ρh1h2)

f
′+
rr ′ =

√
2

π
+ 2

∫ 0

−∞
Dhh

(
1 + erf

(
γr3h√

2

))[
1 + erf

(
h(γrr ′ + ρ)√

2(1 − ρ2)

)]

ga =
∫ 0

−∞
Dh1 h

2
1

[
1 + erf

(
γ13h1√

2

)]
g+
rr ′ = 2

brr ′

√
1 − ρ2

2π

(
1 − 2

π
arctan

(
γr3

brr ′

))

gb
rr ′ =

√
1 − ρ2

2π

1

b2
rr ′

[(
1 + γ 2

3rb
2
rr ′
)− 1

2 − 1
]

and where I+ is given by expression (29).

Appendix B. The asymptotic form of the solution in the second scenario for Hebbian
learning with PII = P+

Because the dependence of the generalization error ε+
g on the overlap ρ is rather complicated

(see (28)), we derive the asymptotic form for ε+
g in two steps. First, we find the asymptotic

relation between ε+
g and φ and then determine the behaviour of φ as a function of α in the limit

α → ∞.

B.1 Asymptotic relation between ε+
g and φ

The generalization error ε+
g is defined as (see (28))

ε+
g = 1

π
arccosρ − u+

12 − u+
21 = φ − u+

12 − u+
21

with the integrals u+
12, u

+
21 given by (30). We now expand these integrals as a function of φ for

small values of φ. First, we change the variables to get

u+
rr ′ = φ

∫ 0

−∞

e− 1
2 x

2φ2

√
2π

dx(1 + erf(aφx))(1 + erf(cx)) ≡ φ

∫ 0

−∞
dxf (φ, x)

where

a = γr

γ3

√
2

c = γrr ′ + 1

π
√

2
.

Expanding f (φ, x) with respect to φ and taking γ1 = γ2 = 1, we get

u+
rr ′ = φ

1√
2πc

− φ2

√
2a

4c2π
− o(φ3)

which leads to

ε+
g = π2

4
√

2γ3

φ2 + o(φ3). (B.1)
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B.2 Asymptotic relation between φ and α

The differential equations (38) and (39) can be written in terms of the variables n1 and φ. For
Hebbian learning and PII = P+, this gives

dn1

dα
= f1(cos(πφ), γ13, γ23) +

1

2n1
f2(cos(πφ), γ13, γ23) (B.2)

dφ

dα
= −f3(cos(πφ), γ13, γ23)

n1π sin(πφ)
+

cos(πφ)

2πn2
1 sin(πφ)

f2(cos(πφ), γ13, γ23). (B.3)

The functions f1(cos(πφ), γ13, γ23), f2(cos(πφ), γ13, γ23) and f3(cos(πφ), γ13, γ23) are
defined in appendix A. By expanding the rhs of the differential equations (B.2) and (B.3)
around φ = 0 up to the first non-vanishing term, we can easily find that for γ1 = γ2

φ =
√ √

2

2π(
√

2 − 1)
α− 1

2 .

By combining this result with (B.1), we obtain the asymptotic formula for the generalization
error:

ε+
g = π

8γ3(
√

2 − 1)
α−1 + o

(
α− 3

2
)
.
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